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420 029, USSR 
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Abstract. Under the vector addition of an arbitrary number of different angular momenta, 
each equal to sl, s2, . . . , s,, the resulting angular momentum j occurs with some multiplicity. 
In this paper, the recurrence relations and the generating functions are obtained together 

with the general exact and asymptotic formulae for these multiplicities, which provide a 
complete solution to the problem. A comparison with the exact multiplicities is given. 

1. Introduction 

Quantum mechanical addition of many identical or different angular momenta often 
arises in various many-particle problems. Here we discuss only the combinatorial 
aspects of the problem-the multiplicities of the total angular momentum-and give 
both exact and asymptotic formulae for the multiplicities. 

The addition of an arbitrary number of identical angular momenta (or, simply, spins) 
s = 4 was examined from this point of view in standard books and papers, e.g. Van Vleck 
and Sherman (1935), Condon and Shortley (1952), Dicke (1954) and Kittel (1977). 
Recently, a more general case for the addition of identical arbitrary spins s was studied. 
It has occurred in quantum chemistry in connection with the branching diagrams 
(Atkins and Lambert 1976, Klein and Garcia-Bach 1977), in the analysis of multiple 
production of elementary particles (Pelagalli et a1 1978) and in mathematical physics 
under decomposition of the direct product of irreducible representations into the sum 
of irreducible representations (Mikhailov 1977, Rashid 1977, Pelagalli et a1 1978). 

Here we summarise the basic results from these papers. The exact multiplicities are 
given by 

sn -xk + n - j - 2 
k n - 2  
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Here n is the number of identical spins s, x = 2s + 1, Qk,, is the number of states with 
a particular value of m, the z component of the total angular momentum is j ,  Pi", is the 
number of the total angular momenta j ,  and ( g )  denotes the binomial coefficients. Here 
and below k represents the positive integers including zero. 

In this paper we give the exact and asymptotic expressions for the multiplicities in 
the most general case, when the vtctor addition includes an arbitrary number of 
different spins, each occurring arbitrarily many times. We also present the recurrence 
relations, the generating functions and the table of exact multiplicities for comparison 
with the values obtained from the asymptotic formula. 

2. Recurrence relations and generating functions 

Let us consider the addition of n1  spins sl, n2 spins s2,. . , , n,  spins s,. As a result the 
total angular momenta 

can occur. The number of total system states with whole magnetic number m is equal to 
Q:;:;;n;:r ,n,, or for simplicity as,,,, and the number of resulting angular momenta i is 
PS,;S;;2,'S~,n,, or simply P;,,, 

There is a well known relation 

Psn = Q:n - Q l + ~ , n  * (7) 

The total number of system states is equal to 

where x i  = 2si + 1, mm = jm,  wi is the probability of finding spin si in the system and 
n =XI nl, the total number of spins. 

There is an expression for Q,, (Mikhailov 1979) which can be generalised for any r 

For practical calculations it is rather difficult to use (9) because of the supplementary 
conditions (1 0). 

It follows from the algorithm of the angular momentum addition, that the multi- 
plicities satisfy the recurrence relations (Mikhailov 1977, 1979, Katriel and Pauncz 
1977) which may be extended to the case of arbitrary r 
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where 

s =SI, s2, . . . , s,; 
n ' ( l ) = n I ,  n2 , .  . . , nl-1, nl-1, n l+ l , .  . . , n,. 

n '111, n2 , .  . . , n,  

We take Q& = Pgo = 1 as initial conditions. 
The generating function for Q, can be formed in two different ways: 
(1) as a function of one variable x, 

(2) as a function of two variables x and y 

It is not difficult to show that the recurrence relations (1 1) are satisfied by the numbers 
Q, from (14) or (15). The generating functions (14) and (15) for r = 1 have been 
determined accordingly by Klein and Garcia-Bach (1977) and Mikhailov (1979). 

3. Exact expressions 

The explicit formulae for Q, and Pi proved to be a natural generalisation of (1) and (2) 
to the case of arbitrary r 

sn - x k  + n  - m  - 1 
n - 1  QLn =I 

k 

sn - x k + n  - j - 2  
k n - 2  

where 

sn =I sin1 = j m  =m,, k = C k i ,  

Let all numbers n except one arbitrary number be equal to zero, then it follows that all 
numbers k except one are also equal to zero because of the simple property of binomial 
coefficients ( g )  = 0 if a < b. Therefore (16) and (17) turn into (1) and (2) yielding the 
desired correspondence. Moreover, when m and j are equal to their maxima sn, we 
obtain from (16) and (17) that Q, =Pi = 1 which satisfies the initial conditions. 
Undoubtedly similar checks cannot replace the proof for (16) and (17). 

The algebraic proof for (2) has been given by Mikhailov (1977), for (1) and (2) by 
Katriel and Pauncz (1977). Rashid (1977) using the character theory of the group has 
provided another proof for (2). Now we present the new algebraic proof for the general 
formulae (16) and (17). 

It is founded on the fact that the multiplicities Q, must satisfy r recurrence relations 
(1 1). With the help of a simple change of indices, without loss of generality, we put 1 = 1 
in (1 1) and consider the quantity 

n = C  m, x k  = 1 Xiki. 
I I I I 
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Introducing for conciseness 

a = s n - ( X k ) ' + n - m ,  

b = s n  - x k + n  -rn - 1 = a  - x l k l - -  1, 

x k  = ( X k ) ' + X l k l ,  
we have 

Here we used the property of binomial coefficients 

Continuing the transformation of D we divide the terms of summation over k into parts 
so that each part includes terms with the same indices k Z ,  k 3 ,  j . .  , k ,  and with all 
possible k l .  The operator 

c= (-1) 
k z , k ? ,  ..., k ,  

is introduced for the sake of brevity and after that D is transformed into 

a i s l  - (2s1 + 1 )  
n 

= c{ ("0') [ (" ; "') - ( a  -; - ')I - ( y )  [ ( 
) - ( a  -SI- 1 -(2s1+ 1) )] +(",i[ ( a  + S I  -:@SI + 1) 

n 

- ( a  - s1 - 1 - 2(2sl + 1) )I-...). 
n 

Using (18) for s = 0 

n + l  (3 + ( i  If 1 )  = i i + 1 

we arrive at 

x k  + ( n  + 1) - m - 1 
( n + 1 ) - 1  
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Thus we have proved that the numbers Q, from (16) satisfy the recurrence relations 
(11); we also take into account the fact that the multiplicity’s initial condition Q& = 1 
automatically follows from (17). Therefore we have completed the proof of (16). After 
that the correctness of (17) is easily established with the help of basic property (7) and 
equation (19). The additional check-up of formulae (16) and (17) has been made by 
means of a comparison with the exact multiplicities for r = 2 , 3 , 4  and n = 1,2 ,  . . . , 10. 
However, we have not included the tables here. 

4. Some properties of multiplicities 

4.1. 

Multiplicities Q, defined in (16) must satisfy relation 

Q - - m  = Qm 

which can easily be checked by explicit calculations. The related condition for Pj from 
(17) 

is less evident, but it is not difficult to prove equation (21) using (7) and (20): 
P-j-1= -Pi (21) 

P-j-l= Q-,-1- Q-j = -(Qj - Qj+l) = -P, I ‘  

Exact formulae (16) and (17) also contain other natural restrictions on multiplicities 

Qm = O  when m > m, or m <-m,, 

Pj = 0 when j > j m  or j<- jm-l .  

One may connect equation (21) with an angular momentum relation coming into 
existence under the mirror reflection of the coordinate system. In particular, it was 
stated by Jucys and Bandzaitis (1965) that ‘the matrix element of the square of the 
angular momentum operator does not change under the substitution j + - j  - l’, which 
corresponds to the coordinate system reflection in the x y  plane. 

4.2. 

We can generalise the numbers P;,, introduced by Mikhailov (1977) to the case of 
arbitrary r 

sn - x k  + n  - j - v -2  
k n - V - 2  

The basic property of these numbers 

(24) 
generalises condition (7). We can prove equation (24). Let c = sn + n - x k  - j - V, 
d = n - I / ,  then with the help of (19) we have 

p:” = p‘.”-’ 
In j,n -pfF;i; 
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The multiplicities Q, and Pi defined in the previous paragraph represent particular 
cases of these general numbers Psi 

(25)  Q s  =pS,-l 
mn m , n .  

pr = ps.0 
i n  i n  

4.3.  

Following Mikhailov (1977) we can now write some new formulae of summation which 
may be useful in statistical investigation of many-spin systems. Having introduced 
sn - x k  = q, n - 2 = t we can put condition (8) in the form 

If we pay attention to the relations 

j = o ,  1 , .  . . 

. 1 3  i 
] =?;,--j,. . . 

t + 2  

we can take the sum over j in (26) .  As a result we obtain 

2sn - 2xk + n sn - x k  + n - 1 
n i n - 1  c ( - O k  

k 

where sn is integer 

where sn is half-integer. Using the resembling method it is possible to take other sums 

where sn is integer, 

where sn is half-integer 

5. Asymptotic expressions 

The asymptotic formula for one kind of spin ( r  = I )  has been obtained by Klein and 
Garcia-Bach (1977) and by Mikhailov (1979).  Our derivation of the asymptotic 
formulae for arbitrary r will be analogous to the method which has been used by Klein 
and Garcia-Bach for r = 1 .  

Using (14) we have after the substitution x = exp(i8) another form of the generating 
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Using the orthogonality of the functions exp(im6) under integration over the segment 
(-T, 7r) we have 

W l n  

(33) Q s  mn =- I IT  9 [ exp(ip10)] expi-ime) de. 
27r -= 

Comparing the two functions 

A ( @ ) =  exp(ip8)=~[1-p2282/2!+p4e4/4!-p6e6/6!+,  . , 
S 

lr 1 & = - S  

= ( ~ S + ~ ) [ ~ - S ( S + I ) ~ ~ / ~ + S ( S + I ) ( ~ S ~ + ~ S - I ) ~ ~ / ~ ~ O  

-S(S + 1) (3s4+6s3  -3s + 1)06/15120+.  . .], 
B(B) = (2s + 1) exp[-s(s + 1)02/6] 

= ( 2 ~ + i ) [ i - ~ ( ~ + 1 ) e ~ / 6 + ~ ~ ( ~ + 1 ) ~ e ~ / 7 2 - ~ ~ ( ~ + i ) ~ e ~ / 1 2 9 6 + .  . .I, 
we can see that (i) the maximum values of these functions are A(0)  = B(0)  = 2s + 1, (ii) 
A ( 8 ) ~ B ( ~ ) > 1 f o r ~ ~ l , ( i i i ) ~ A ( ~ > l ) ~ ~ ~ A ( ~ ~ l ) a n d B ( 8 > 1 ) ~ ~ B ( 8 ~ 1 ) .  Forthese 
reasons, the two integrals 

r r  I-:A~(~) de, I_, B " i 8 )  de  

are getting more closely approximate for increasing values of n. Therefore it is possible 
to make the substitution in (33): 

5 = (s2) = 1 WISI(S1 + 1). (34) 

With the help of standard formula (Gradshteyn and Ryzhik 1962) we can carry out 
integration in (34) 

1 

QL,, = (E,$") (3/27rnl)"* exp(-3m2/2nl).  (35) 

Table 1. Sequences of parameters extracted from exact multiplicities QL,, for r = 2: s ,  = i, 
s2 = 1; w1 = w 2  = f .  For comparison we give values of the parameter from the asymptotic 
expression (34): [ = = 1.375. 

~ 

n 4 6 8 10 12 14 16 18 20 22 24 
I, 1.68 1.58 1.54 1.50 1.48 1.465 1.457 1.445 1.440 1.433 1.429 

Table 2. Sequence of parameters for r = 2: s1 = i, sz = 1; w 1  = i, w2 = 3.  For comparison we 
give the values of the parameter from the asymptotic expression (34): [ =% = 1.583. 

~~ ~~~ 

n 3 6 9 12 15 18 21 
I n  1.95 1.81 1.73 1.70 1.67 1.66 1.64 
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This is the asymptotic expression for multiplicities Q, in the general case of arbitrary r, 
n ,  si ,  w I .  The expression for angular momentum multiplicities P, turned out, cor- 
responding to the normal distribution (35), to be 

(36) ~ f , ,  = pi,, ( 2 j  + 1) exp(-j2/c), 

(38) 

Since n is large and frequently (s2) > 1 the number 
We have used several approximations to derive (35). Therefore it is desirable to 

compare (35) with the exact multiplicities calculated by other methods; that is, 
recurrence relations (1 1) or the exact expression (16). The comparison of (34) with the 
exact values is given in tables 1 and 2. We use the following method of comparison. Let 
us consider the addition of two kinds of spins sI  = f and s2 = 1 with equal (table 1) and 
different (table 2) probabilities to encounter a corresponding spin. Provided n = n + n 2  
increase, the exact multiplicities Q& and Qi,, for integer sn (or Qi,,, and Qi,,, for 
half-integer sn) are calculated. Using these pairs of multiplicities we can determine 
with the help of (35) the parameters l,,. It is the sequences of l,, which are represented 
in tables 1 and 2. Both sequences apparently tend to definite limits and we may assert 
that these limits are equivalent to l from (34). In table 3 the exact multiplicities QL,, 
and the approximate ones predicted by equations (34) and (35) are written together 
with the relative percentage deviations AQL,. It must be noted that the relative 
deviations AQL, asymptotically tend to zero for increasing n, and are small for 
m s s n / 2  = m,/2. 

2 2  c = g ( s  ). 

in (37) may be omitted. 

6. Conclusions 

The basic results of this paper are represented in equations (16), (17), (35) and (36). In 
these expressions the problem of the exact and asymptotical enumeration of angular 
momentum states arising under the addition of spins of different kinds are solved 
completely. These results entirely agree with the more particular cases previously 
published by different authors. 
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